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A procedure is presented to calculate the elastic displacement fields found in the early stages

of coherent precipitation in age hardenable alloys. The procedure is designed for

a subsequent calculation of X-ray diffraction profiles. Displacement fields from precipitates

of finite size having local order may be examined with reduced computer times. Point

sources consisting of a doublet combined with a spherical field are distributed over the

plane of a disk shaped precipitate. The relative strength of this combination is adjustable;

however, the total strength is scaled to be in agreement with lattice parameter data. An

empirical correction for elastic anisotropy, is guided by Green’s function calculations.

Examples are given for calculating fields from single disks and stair step pairs. These

calculations may be carried out with reduced computer time. This is made possible by

reducing a large number of uniformly distributed point sources to an optimum number

having weighted strengths and special locations throughout the plane of a disk. In order to

assess directional effects and more readily relate the displacements to diffraction data,

projected displacements are used. The tetragonality of the interplanar d-spacings is

examined within zones of severe deformation located in the immediate vicinity of the

precipitate.
1. Introduction
Analytical procedures are available to calculate the
anisotropic elastic displacement fields created by disk
[1] and ellipsoidal precipitates [2] that show misfit
with the surrounding matrix. Although these Green
function calculations provide useful and accurate files
of the displacements from single precipitates, they are
less convenient when interacting arrays of precipitates
are examined because of the considerable computer
time involved. The difficulties become even greater
when these numerical files serve as input for other
calculations that model experimental data. There is
a need for a simple analytical formulation for displace-
ment fields, with a minimum number of parameters,
that requires an order of magnitude less computer
time so that arrays of precipitates can be examined
and compared with experimental data.

Two related asymptotic models developed by Keat-
ing and Goland (K—G) are of special interest. The first
[3] deals with a field having tetragonal symmetry
about an interstitial atom in an isotropic lattice. As an
isotropic calculation, the field typically differs from
more exact anisotropic Green function calculations.
A simple trigonometric function is introduced to re-
shape the field so that it appears like the more exact
anisotropic calculations for a range of elastic con-

stants. This tetragonal field requires a combination of

0022—2461 ( 1997 Chapman & Hall
pure doublet and point sources. The doublet and
spherical strength parameters are allowed to vary to
fit the conditions of the specific problem. Lattice para-
meter data are used to determine the overall strength
of the field [4]. In a second calculation, treating pris-
matic loops in an isotropic medium, Keating and
Goland [5] calculated the elastic displacement field
produced by the insertion of an incompressible disk in
a circular incision or the removal of a like amount of
material. This was initially developed to represent
a continuum calculation of the elastic field from an
interstitial or vacancy loop. A displacement of$b/2
was imposed perpendicular to the plane of the loop
within its circumference and zero outside. At large
distances from the loop, the exact expression for the
field converges to that of a point source with spherical
symmetry and a single doublet oriented perpendicular
to the loop plane. This combination introduces lattice
displacements with tetragonal symmetry. The
strengths of the two singularities depend upon ‘‘b’’, the
loop area and Poisson’s ratio. Like the interstitial,
the combination of a doublet without moment and
spherical field imparts tetragonal symmetry to the
displacement field. However, in this case, the imposed
boundary conditions applied to the inclusion gives
inter-related spherical and doublet strengths. This re-

striction is eliminated in our development in order to
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deal with observable transformation strains relating
to precipitation problems.

Our model for a disk-shaped precipitate, is de-
veloped from the asymptotic field for the interstitial
but is modified to include an empirical term for elastic
anisotropy. The field for a disk is obtained by sum-
ming over a uniform distribution of centres in the
plane of the disk and contains an adjustable para-
meter which allows for a range of transformation
strains. Symmetry is assumed about the disk axis.

The interacting fields from two disks in an array is
obtained by super position. A stair-step configuration
along [110] directions is of special interest for aged
Cu—Be. This has been considered previously for an
isotropic matrix [6, 7]. In a parallel paper, the
authors, introduced this field into diffraction calcu-
lations to quantitatively model the Bragg and diffuse
scattering from the distorted matrix. A stair-step
model is believed to be particularly important when
this alloy is aged at low temperatures.

2. Displacement fields
2.1. Point field-anisotropy

Undersize or oversize atoms within a disk-shaped
precipitate are assumed to contribute individually as
a sum of doublet and spherical disturbances. The
isotropic formulation by K—G [3] is given by
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expressed in terms of single crystal elastic constants.
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with P
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22

representing the components
of the dipole tensor for a tetragonal field [9]. Integrat-

ing Equation 1 over a spherical surface surrounding
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the point defect gives a volume change »
SF
»
!
/c per

defect in an infinite medium. The terms »
SF

and »
!
are

conveniently tabulated by King [4] and refer to
measurable volume changes in crystals of finite size.

The effect of elastic anisotropy may be examined by
making a comparison with Green function field calcu-
lations. This has been done for a range of interstitial
systems using the original K—G function in references
[10, 11]. Differences are found between isotropic and
anisotropic calculations except for the case of tungsten
which is elastically isotropic. The departures are most
evident at /+0° and 30°, and have planar symmetry
with respect to the z-axis. A small variation in the field
occurs about the z-axis in the Green function calcu-
lations, this is neglected and rotational symmetry is
assumed. Wing-shaped displacement contours be-
come increasingly apparent as the anisotropy factor
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becomes more positive, while a negative C
%

extends
the iso-displacement contours along the z-axis. Intro-
ducing an additive empirical correction of the form
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produces wing-shaped contours close to 30° for
f (C

%
'0) and if f (C

%
(0) the field becomes extended

along z as it does for the more exact calculations.
The following approximates the field from Green
function calculations
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Constants are selected in Equation 11 such that the
volume change about a single defect remains un-
changed at »

SF
»
!
/c. Ta and Nb are selected as extreme

cases with C
%
"0.359 and !0.96 respectively. The

shapes of the iso displacement contours shown in
Fig. 1(a and b) compare favourably with our previous
results [10] and with Figs 5 and 7 of reference [11].
The latter calculations were more strongly based on
experimental results. Equation 11, with tetragonal
symmetry, will be introduced in a later section for disk

calculations.



Figure 1 (a) Iso-displacement magnitude contours for point defect
(N) in niobium (dots . . . elastically isotropic approximation, solid
line . . . elastically anisotropic case calculated with C

11
"240.2,

C
12
"125.6, C

44
"28.2 GPa. Other factors used for calculation:

»
SF
"!0.203, »

!
"21.2]10~3 nm, C

SD
"0.39. The displacement

directions are shown by arrows at selected points. The contour is
shown for a displacement of 1.5]10~14 m, and (b) Iso-displacement
magnitude contours for point defect (N) in tantalum (dots . . . elasti-
cally isotropic approximation, solid line . . . elastically anisotropic
case calculated with C

11
"260.2, C

12
"154.5, C

44
"82.5 GPa.

Other factors used for calculation: »
SF
"!0.16, »

!
"22.7]

10~3 nm, C
SD
"0.304. The displacement directions are shown by

arrows at selected points. The contour is shown for the displace-
ment of 0.57]10~14 m.

2.2. Geometrical considerations
For diffraction calculations, the displacements must

be projected onto directions perpendicular to the dif-
fracting planes and summed over all defects for each
lattice site. Projection enables one to examine the
importance of crystal direction as it relates to static
displacements. Fig. 2 illustrates the various angles,
shown in stereographic projection, that must be con-
sidered. The tetragonal axis normal to the disk is
located along the z-axis. Point C locates the normal to

the planes (hkl), which is confined to the xz plane,
Figure 2 The angles considered in the calculation of the displace-
ment field shown in stereographic projection. S . . . angle between
the z-axis and the normal to the planes (hkl), a, / . . . angles defining
relative orientation of the point of interest r, v . . . angle between the
normal to the planes (hkl) and the vector r. ¹!¹ @ define the
direction of the stair step.

r locates the angular position for a vector extending
from the disk centre to a point in the matrix, and point
T gives the relative orientation of a centre line for the
stair-step pairing of disks. Angular inter-relationships
are visualized in terms of stereographic projections of
unit vectors. The angles s, v, and / form a spherical
triangle having sides that are great circles on the
surface of a sphere, and a is the angle between planes
with sides s and /. The radial projection of r onto
a column C is obtained from the spherical triangle i.e.,
radial distance is multiplied by

cosv
3
"cos s cos/#sin s sin/ cosa (14)

The projection of the tangential component along i/ ,
which differs by p

2 from the radial direction, is multi-
plied by
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5
"cos s cos A/#

p
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Fig. 3(a and b) illustrates a point source located in
a disk at an angle, a

$
, with radius, r

$
. All sources are

confined to a planar region )r
0
. The matrix point

M may be reached from the point source at ‘‘i’’ by the
vector, r

*
, or from the centre of the disk by r, which

make angles, /
*
, and / respectively with the z-axis.

The corresponding angles with x in the plane x—y are
a
$

and 0. Both the point field and the point distribu-
tion maintain symmetry about the z-axis and give
a disk field independent of a.

The disk locations for a two-step source in cartesian
coordinates are described by taking disk centres that
are spaced by a distance ‘‘2a’’ at positions $aC

9
,

$aC
:
,$aC

;
, with C

9
, C

:
, and C

;
designating direc-

tion cosines for the line connecting disk centres
(Fig. 4). The orientation of this line of separation is
shown in Fig. 2 by the projected points ¹ and ¹ @. The

fields from disks 1 and 2 depend upon the vectors r

1
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Figure 3 Angles, vectors, and dimensions shown entering calcu-
lations for the displacement at the point M caused by point sources
i in a disk. (a) Top view and (b) Side view.

Figure 4 Angles, vectors, and dimensions shown entering calcu-
lations for the displacement caused by the pair of disks separated
by 2a.

and r
2

with origins at the disk centres, as well as, the
angles /

1
and /

2
which these vectors make with the

z-axis. Radial distances and angles for both r
1

and r
2

are written in terms of the single vector r, which is
determined by angles / and a, the radial distance, and
parameters defining the location of the disks. Expres-
sions for r

1
and r

2
, are given in the next section.

Rotational symmetry about the z-axis, perpendicular
to the disks, is lost in the two-step source unless ¹ and
z are parallel i.e., point ¹ coincides with z in the
stereographic projection of Fig. 2.

The last geometrical consideration deals with the
relative projected displacement of points along a line
or along columns ‘‘C’’. Introducing the displacement
field with a gradient alters the average interplanar
separation, d

0
, that exists without the field. Of particu-

lar interest for diffraction calculations is the average
interplanar spacing within severely distorted zones
either in the immediate vicinity of a disk-shaped pre-

cipitate or a two-step pair of disks.
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Figure 5 Angles and vectors for describing spacing changes parallel
to H

),-
.

Fig. 5 illustrates the reciprocal vector H
),-

which
defines the orientation of the line of projection for
columns of cells perpendicular to the reflecting planes
(hkl). A line parallel to H

),-
extends from points = to

>. These points are at a distance$d
0
2 from r with the

total distance d
0

representing the spacing of the re-
flecting planes (hkl). The two points are located from
the origin by the vectors r

`
and r

~
having spherical

angles /
`

, a
`
, and /

~
, a

~
. Since H

),-
is always taken

to be located in the xz plane, the direction cosines for
a parallel line extending to points => is given by C

XL
and C

ZL
. A single vector r is used for pair locations

along with parameters d
0
, C

XL
and C

ZL
. The average

relative projected spacing change is determined from
the appropriate displacement field by summing over
all pairs of points with an initial spacing d

0
parallel to

H
),-

.

2.3. Field calculation for a disk
The total field from all point sources in a disk is
expressed in terms of a single radius vector, a set of
parameters containing projection angles, and the
radius and height of the disk. Individual point sources
are projected separately in terms of /

*
, and a

*
using

Equations 14 and 15. These have been defined pre-
viously and refer to Fig. 3. Noting that
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While /
*
solely influences the strength of source ‘‘i’’,

both angles influence the projection onto column ‘‘C’’.
If l
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$
, a

$
) is the lattice displacement, Equa-

tion 11, at r, /, a due to a point source in the disk at
r
$
, a

$
, the total projected displacement onto column,

C, due to the full disk for the matrix position r, /, a is
obtained by integrating over a uniform distribution of
sources within the disk
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l
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and l
5*

representing the radial and tangential com-
ponents of Equation 11. »

!
is the atomic volume and

x
4
is the fraction of sites in the precipitate occupied by

undersize or oversize solute atoms.
The field calculation for a disk is carried out by

numerical integration. In using a Gauss—Legendre
Quadrature (GLQ) scheme, the angular and radial

integrations over the disk can be expressed as a min-
imum number of point sources within the confines of
the disk. This positions the point sources at special
locations with a set of weighting functions that alter
the individual strengths of the defects. The total
strength remains unaffected by this distribution. We
find that the number of sources or the number of
points in the quadrature required to describe a dis-
placement largely depends upon the distance from the
disk. At large distances, only one point source is re-
quired while at the closest distances, the maximum
number is required. To a first approximation, the
maximum number is determined by the largest spac-
ing of point sources within a disk relative to the
distance of the nearest atomic plane in the matrix. The
distance to the nearest plane should be greater than
the maximum distance between pairs of point sources.
This is approximate because the interplay of weighting
factors and directional effects from the separate point
fields can influence oscillation errors.

For most of the region of interest about a disk, an
eight-point quadrature is taken for the integration
over a

$
and six points over r

$
. This gives a total of 48

point sources over the full disk. As the disk is ap-
proached closely, additional terms may be required to
reduce the oscillations in the numerical results. For
this example, the contribution of the projected dis-
placement from each source i is given by the sum
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Roots (z
+
) and weighting factors are given in reference

[12].
The magnitude of the displacement, or vector sum

of radial and tangential components, can be plotted in
terms of iso displacement contours in a plane passing
through the centre of the disk. This is accomplished
with Equation 27 by projecting according to Equa-
tions 14 and 15 onto a line parallel to r with a"0, and
s"/ for the radial component, and a"0, s"/#

p
2

for the tangential.
Fig. 6 illustrates displacement contours and direc-

tions for one point defect using Equation 11. The
conditions are for the asymptotic field from a single Be
atom in a GP zone with »

SF
"!0.2645]10~3 nm3,

»
!
"11.81]10~3 nm3 and c"1.32. A Be atom in the

GP zone produces a tetragonal strain with e
11
"

e
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"0.112 and e

33
"!0.334. This can be related to

C
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according to [13] by;
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where C
11

and C
12

are elastic constants. A maximum
field strength is found along /+30° and a minimum
along /+65°. If GLQ point sources are distributed
over a plane for a thin disk of radius 3.5 nm and
thickness 0.8 nm (Equation 27), the core region near
the disk becomes modified as is shown in Fig. 7. At

larger distances, the contours would look like those in
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Figure 6 Iso-displacement magnitude contours (in nm) and selected
directions for a point defect in copper calculated with the following
parameters: C

11
"168.3, C

12
"121.1, C

44
"75.7, »

SF
"!0.2645,

»
!
"11.81]10~3 nm3.

Figure 7 Iso-displacement magnitude contours (in nm) and direc-
tions for a disk Cu—50 at% Be in a Cu matrix with a diameter of
7.0 nm and height of 0.8 nm calculated from Equations 25 and 26.
calculated with the number of GLQ sources along the radial and a di

Other parameters are the same as for Fig. 6.

2740
Fig. 6 for the asymptotic field. In the core region, the
major displacements tend to be perpendicular to the
disk while for large distances they are radial. These
findings were found to be in agreement with a Green
function calculation [13].

Fig. 8(a and b) illustrates the importance of the
number of GLQ sources in terms of the z-displace-
ments along the radial directions /"40° (a) and
/"70° (b) for a disk with a 3.0 nm radius and
0.29 nm height. The dashed curves were obtained with
48 sources (n

3
"6, nad"8) while the solid was ob-

tained with 600 (n
3
"15, nad"40). The dotted curve is

intermediate at 120 sources. Near the surface at
/"0°, 48 sources are fully adequate, while at /"40°
and 70°, oscillations due to the close proximity to
individual sources are apparent and a larger
number of sources is required. As expected, all three
results converge asymptotically as the distance to the
point of displacement increases beyond the radius of
the disk.

2.4. Stair-step pair
The field from the disk, Equation 27, is used to obtain
the field from the stair-step pair of disks whose centres
are confined to the line 1—2 (Fig. 4). Each disk is at
a distance ‘‘a’’ from the origin and located at ($aC

:
,

$aC
:
, $aC

;
). The quantities C

9
, C

:
and C

;
, are

direction cosines for the pair. Again, we are interested
in determining the projected displacements in the
matrix onto columns ‘‘C’’, due to a displacement
at position r, /, and a. The field from the two-step
pair at disk locations (r

1
, /

1
, a

1
) and (r

2
, /

2
, a

2
)

are expressed in terms of ‘‘a’’, and the direction cosi-
nes. By using the same procedures as for the disk, one
obtains:
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Figure 8 Effect of the number of GLQ sources on the z-displacement along a radial direction at / angles, (a) 40°, (b) 70°. The curves were

rections of (· · · ·) 10—12, (— —) 6—8 and (—) 15—40.



Also
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Again, the#and!refer to disks 1 and 2 respectively.
In taking the limit r<a, the two sources appear as

one of double strength when the terms in (ar ) vanish.
This, of course, provides a major simplification of the
field calculations for approximately r'20a.

The projected field for the two-step pair is expressed
functionally by:
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with the locations of disks 1 and 2 given in terms of r,
/, a from Equations 29—31. Equation 32 represents
the sum of projected displacements from all point
sources located within both disks. In this example of
6 and 8 point GLQ per disk, a total of 96 terms are
taken for both with each term containing a weighted
distribution of individual point sources. This, repres-
ents a more optimum distribution than one which is
uniform in density and weighting factors (refer-
ences [6, 7].

In order to relate this model with X-ray diffraction
(XRD) data, an additional triple integration over r,
/ and a is required for 2M intensity attenuation
factors. This will be presented in a later paper [15].
Lowest order quadratures over a limited region, rep-
resenting the basic symmetry element within the
matrix, must be taken to minimize computer time.

The displacement magnitude contours from a disk
with a radius of 3.0 nm and height 0.29 nm are shown
in Fig. 9. This can be compared with the displacement
fields from a stair-step pairing of disks at an angle of
45° as illustrated in Fig. 10(a—d). The separation be-
tween centres is 3.0 nm for (a, b), and 7.0 nm for (c, d).
The 45° step introduces an asymmetrically elongated
distortion of the contours along the step direction.
Displacement contours in the outer region become
expanded relative to a single disk (Fig. 9), and new
contours of larger displacement magnitudes appear
near the outer surfaces (see contours 0.35 to 0.25 in
Figure 9 Displacement magnitude contours around a Cu—50
at% Be disk with a 6.0 nm diameter and a unit cell height of
0.29 nm.

in the outside regions. Because of field cancellation in
the region between disks, the contours shrink or dis-
appear as their separation decreases. At a"3.0 nm
(Fig. 10b), only contours of small displacements are
found between disks. However, large displacements
are found between edges on each side of a pair which
do not cancel. Isodisplacement contours are shown in
Fig. 11 (a and b) for the pair of disks with doubled
height. There are no important changes in the general
shape of the contours rather the values of displace-
ments are increased by a factor of two.

Dimensional changes of the d-spacings along the
principal axes are directly relatable to the displace-
ment gradient. This will be considered in the next
section.

2.5. Incremental spacing change
In each of the previous calculations, displacements of
individual lattice points are of interest. To determine
incremental d-spacing changes, pairs of cell displace-
ments are considered along specified directions. The
core region about two-step pairs is of special interest.
Equation (32) may be used with additional co-ordi-
nate transformations. The radial distances from the
origin to undisturbed points separated by d along
0

r2
$
"r2 C1#A

d
0

2rB
2
$A

d
0
r B (C

XL
sin/ cosa#C

ZL
cos/)D (33)

Fig. 10b). This is expected from the addition of fields a column direction is given by
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Figure 10 Side view of displacement magnitude contours around a pair of Cu—50 at% Be disks in stair-step (45°). The disks have a common
diameter of 6.0 nm and a height of 0.29 nm with centre-to-centre separations of 3.0 nm (a, b), and 7.0 nm (c, d). The displacement directions

are shown by arrows at selected points and the corresponding zones between the disks are enlarged in Fig. 10 (b, d).
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For each column direction H
),-

, the spacing change
expressed in terms of a central vector ‘‘r’’, may be
averaged over a range in volume such as the core
displacements. This is carried out with the following
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Figure 11 Side view displacement magnitude contours around
a pair of Cu—50 at% Be disks with dimensions 2r"6.0 nm,
h"0.58 nm and separation of 7.0 nm. (a) overall view (b) detailed
view between pair.

giving the average change resulting from the field in an
infinite medium. The radius vectors r

,
and r

0
define

a zone of special interest in the matrix starting at the
precipitate surface. For example, this might be a zone
of severe deformation that extends to r

,
which locates

a displacement that serves to define a limiting surface.
It might also designate a zone of core displacements.

The interplanar spacing in the matrix without de-
fects, d

0
, is altered when point defects are introduced.

For a finite medium, this is treated in two parts. The
first results from the deformation associated with the
requirements for a stress-free surface which depends
upon (hkl) due to the tetragonal nature of the de-
formation. The second is relatable to the forces
associated with the displacement field in an infinite
medium. Both are described by K—G in their isotropic
description of a tetragonal disturbance from a point
source [3]. When both are combined, one arrives at
the average d-spacing as determined from the Bragg
peak of the matrix, d

.
, when r

,
extends over the entire

matrix.
The limits of Equation 36 are defined to exclude the
zone within coherent precipitates, which results in
spacing changes in the matrix that are opposite to
those in the precipitate. For example, a d-spacing
contraction in the [001] direction within a coherent
precipitate produces a field in the matrix that locally
expands the d-spacings. Likewise an expansion of the
precipitate would produce a local contraction of d-
spacings in the matrix. The diffracted diffuse inten-
sities are displaced accordingly about the Bragg peak.
These relative changes have been discussed to describe
diffraction effects from d-spacing changes about inter-
stitial and vacancy loops [14].

The d-spacing changes, calculated from Equa-
tion 36, for single disks and for stair-step pairs, are
listed for selected directions in Tables I and II respec-
tively. To calculate these averages, a highly deformed
matrix zone was defined which extends from the
precipitate interface to a surface representing a dis-
placement of 0.015 nm. This displacement surface was
located by taking steps along each radial direction so
that adjacent points bracket the limiting surface. Each
radial distance, r

,
, was obtained by interpolation be-

tween a pair of adjacent points. A more elaborate
procedure had to be used for the field from a pair of
disks because the variation with distance does not
decrease monotonically. In each case, material within
the disks was excluded from the averages.

The results for average d-spacing changes should be
considered as semiquantitative because Equation 36
normally provides a small difference between numbers
that are typically relatively large. Despite this diffi-
culty, the present model does give results that are
sufficiently systematic to allow the following con-
clusions to be made within a highly deformed zone.

(1) The largest increase in average interplanar spac-
ing is along a direction perpendicular to the disk.

TABLE I Average change in interplanar spacing in units of
0.0001 nm for single disks having a height of 0.29 nm with various
diameters. S

+
locates the angle of inclination relative to the disk

plane having a normal along the [001]

Planes S0
+

2r(nm)
4.0 6.0 9.0

(111) 54.74 3.8 3.1 6.1
(200) 0 10.0 6.6 6.9
— 90 ! 0.4 !0.5 0.7

TABLE II Average change in interplanar spacing in units of
0.0001 nm for various interdisk spacings in a 45° stair step. All disks
have a diameter of 6.0 nm and a height of 0.29 nm. For the (002)
plane, the angle of inclination is 0°, while (a) entries refer to like
planes having an angle of inclination of (90°) in the plane containing
[001] and a line connecting disk centres. (b) entries refer to a 90°
inclination but perpendicular to the plane in (a)

Planes S0
+

2a(nm)
3.0 5.0 7.0 9.0

(111) 54.74 3.6 4.3 2.3 2.9
54.74 2.9 4.5 1.0 !1.1

(200) (a) 90 12.5 10.0 8.0 3.7
(a) 90 2.6 !0.12 !0.65 1.7

(b) 90 !1.1 !0.06 !0.14 !1.1
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It is smaller for S111T directions and often nega-
tive in directions parallel to the plane of the
disk(s).

(2) Increasing the ratio of disk height to radius,
results in greater differences or anisotropy be-
tween the average changes for S001T and S111T
spacings.

(3) Decreasing the distance between disks in a stair-
step increases the anisotropy of interplanar
spacings.

Similar calculations carried out for S110T and S311T
directions, where other planar angles are examined
with respect to the disk planes, are in accord with the
preceding conclusions. The S311T set displays an an-
isotropy similar to the S100T set rather than the S111T.

The average mechanical deformations in the Cu-
rich matrix about a disk-shape precipitate exhibit
a tetragonal symmetry for a single disk in its simplest
description. However, this may appear to be mono-
clinic with stair-step pairs. The average departure
from tetragonal symmetry is not large enough to en-
able a convincing experimental confirmation to be
made. This will be discussed further in a subsequent
paper dealing with the X-ray diffraction data from
a Cu—Be alloy aged at 200 °C [15].

Projected displacements from these simplified mod-
els are used to calculate attenuation factors (2M). This
includes the projected displacements from all disks
over a full range of distances. Tables I and II represent
spacing changes in the severely distorted matrix from
only primary disks. In a dense system of precipitates
with some local order, there are many ‘‘secondary’’
arrangements which are unknown. The overall effect
of the resultant secondary field is determined experi-
mentally in terms of an additional distortion of the
unit cell obtained from quasiline peak positions.

3. Discussion
When a substitutional atom in the matrix becomes
associated with a coherent precipitate, its contribution
to the displacement field of the matrix, in general,
undergoes a change in symmetry. One example is that
of a solute atom in a cubic solid solution that becomes
transferred to a flattened ellipsoid or a disk-shaped
precipitate that resembles a second equilibrium phase.
In this important case, the field in its simplest form
changes from one with cubic symmetry to tetragonal
symmetry. For a coherent precipitate, the overall
strength per defect need not change, but the new
symmetry is determined by the transformation strains.
This influences the field, as described in this develop-
ment, through C

4$
in Equation 28. The development

for the displacement fields for finite precipitates and
oriented pairs have been based upon the field of
a point defect having tetragonal symmetry. This sym-
metry requires a spherically symmetric point source
and a doublet force. The effect of elastic anisotropy is
introduced empirically in a way that maintains the
simplicity of the K—G analytical result, without
changing the overall strength per defect. To generate

the field from the precipitate, point sources are distrib-
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uted uniformly and summed by integration. Numerical
integration, using a Gauss—Legendre quadrature effec-
tively reduces the number of point sources to a min-
imum. The resultant summation contains defects with
a nonuniform weighting of strengths and distributed
over the plane of a disk. When the field of two or more
precipitates are examined, the number of point sources
increases linearly with the number in the array and
computer time becomes an important consideration.
The time consideration becomes even more critical if
additional integrations or averaging is required to relate
the field to experimental results. Our results for a disk
compare well with other more tedious calculations that
treat anisotropy directly from first principles.

A stair-step pair of disks show field reinforcement in
the exterior region about a pair and cancellation in the
volume between the pair. The degree of reinforcement
and cancellation increase as the pair separation
decreases. As expected, the symmetry of the equi-dis-
placement contours is influenced by elastic anisotropy,
the tetragonality of the point source, and the configura-
tion of the stair-step. Displacements are projected
throughout the calculations in order to relate to direc-
tional effects that influence diffraction data. It also
allows one to assess displacement field anisotropy.
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